
Trade of Plumbing Module 1: Thermal Process and Mild Steel Pipework

Unit 5: Drawing

Phase 2

Table of Contents

List of Figures	
List of Tables	5
Document Release History	6
Module 1 – Thermal Process and Mild Steel Pipework	7
Unit 5 – Drawing	7
Learning Outcome:	7
Key Learning Points:	7
Training Resources:	7
Exercise:	
Key Learning Points Code:	
Introduction	
Materials and Equipment	9
Basic Drawing Equipment	10
Paper Sizes	
Standards and Conventions	12
Dimensions	
Letters and Numbers	
Borders and Title Blocks	
Scales	
Scale Rulers	15
Graphical Symbols and Abbreviations	
Specifications	22
Identification of Pipework	23
Systems of Representation	
Orthographic Projection	
Isometric Projection	
Self Assessment	27
Symbol exercises	
Index	

List of Figures

Figure 1.	Basic Drawing Equipment	
Figure 2.	Paper Sizes	11
Figure 3.	Dimensions	
Figure 4.	Title Block	
Figure 5.	Block Plan	14
Figure 6.	Scale Rulers	
Figure 7.	British Standards Institution Symbols	
Figure 8.	Direction of Flow	
Figure 9.	Orthographic Projection	
Figure 10.	Isometric Projection	
Figure 11.	Isometric Projection	

List of Tables

Table 1.	Abbreviations for Pipe Rises/Drops	16
Table 2.	Service Abbreviations	17
Table 3.	BSI Symbols	19
Table 4.	BSI Symbols	20
Table 5.	BSI Symbols	21
Table 6.	Identification of Pipework	23
Table 7.	Symbol Exercises	27

Document Release History

Date	Version	Comments
04/03/14	2.0	SOLAS transfer

Module 1 – Thermal Process and Mild Steel Pipework

Unit 5 – Drawing

Duration – 25 hours

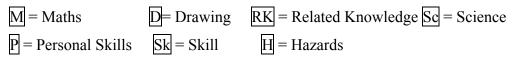
Learning Outcome:

By the end of this unit each apprentice will be able to:

- Produce basic first and third angle orthographic projection drawings.
- Produce basic isometric line drawings.
- Read and interpret working drawings.
- Read and interpret house plans with plumbing details.
- Read and interpret sample industrial mechanical services drawings.

Key Learning Points:

Rk	'A' size drawing sheets.
Rk	Drawing standards and conventions.
Rk D	Borders, title blocks and lettering.
Rk	Dimensioning.
Rk D	Orthographic projection.
DM	Spacing and drawing sheet layout.
Rk D	Isometric projection.
Μ	Ratios
Μ	Fractions
Rk D	Reading and interpreting piping drawings.
Rk D	Use of scale rule.
Rk D	Graphical symbols and abbreviations for the plumbing trade.
Rk D	Pipe identification charts.


Training Resources:

Classroom facilities, information sheets, sample working drawings.

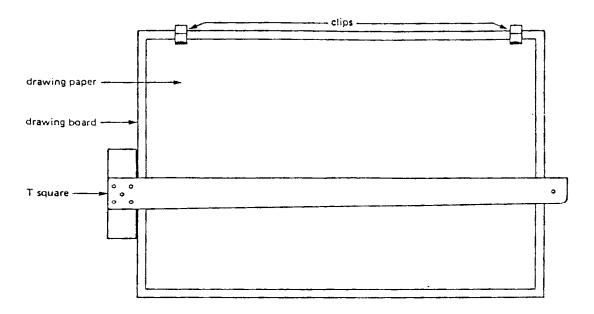
Exercise:

Sample Drawing Exercises 2.1.5a, 2.1.5b, 2.1.5c, 2.1.5d, 2.1.5e, 2.1.5f, 2.1.5g, and 2.1.5h shown in the curriculum document.

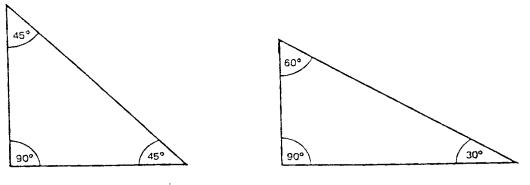
Key Learning Points Code:

Introduction

Drawings are a means of visual communication used to transfer information between people. The ability to read drawings, interpret symbols and understand scales is an essential requisite for the modern craftsperson.


Materials and Equipment

The basic materials and equipment required by the student apprentice are listed below.


- A2 Drawing Board.
- T-Square.
- 45° Set Square.
- $60^{\circ}/30^{\circ}$ Set Square.
- Protractor.
- Springbow Compass.
- Metric Scale Rule.
- Selection of Pencils i.e. 2H 3H 4H.
- Pencil Sharpener.
- Eraser.
- Drawing Board Clips or Masking Tape.

It should be noted that when purchasing any of these items the standard might vary according to cost. In general however, good equipment may help to produce a better standard of work.

Basic Drawing Equipment

Ordinary wood drawing board

45° set square

60°/30° set square

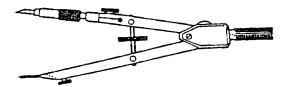
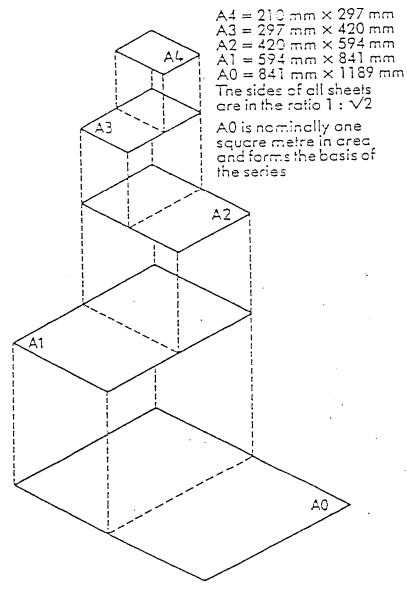



Figure 1. Basic Drawing Equipment

Paper Sizes

In the metric system the sizes of drawing sheets are referred to as the 'A' Series. The largest size is AO and is 1 square metre in area which measures 841mm X 1189mm. If a sheet of AO paper is halved it becomes an A1 size. Similarly if an A1 sheet is halved it in turn becomes A2. This principle follows through whereby if A2 is halved it becomes A3 and if A3 is halved it becomes A4. The drawing below illustrates this principle.

Relationship of the 'A' sizes

Figure 2. Paper Sizes

Standards and Conventions

In the construction industry all drawings are carried out to a British Standard referred to as BS 1192. This ensures that every drawing produced within Ireland and the UK relating to a building project will follow the same standard principles.

Dimensions

Dimensions should be shown as follows:

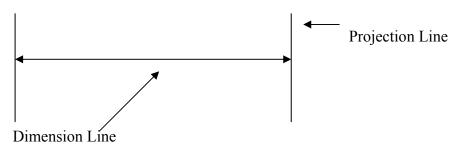


Figure 3. Dimensions

The conventions relating to dimensions are as follows:

- State dimensions once only.
- Place in the most appropriate view.
- Keep related dimensions on the same view.
- Select the functional dimensions.
- Avoid redundant dimensions.

Give metric dimensions to the least number of significant figures, for example;

Dimensions less than 1 are expressed with a zero preceding the decimal point;

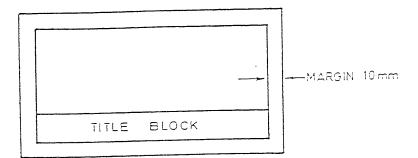
0.5 not 5

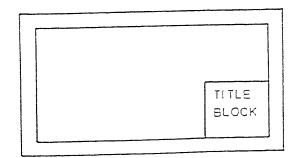
Letters and Numbers

All drawings require some form of lettering and numbers. The principles to remember are:

- They should be legible and clear especially numbers, as they often have to be read on their own.
- They should be of a suitable size and not less than 3mm tall. Title blocks and relative information are usually larger.
- They should be correctly spaced and positioned. Notes and captions should be placed so that they can be read in the same direction as in the title block. In other worlds it should not be necessary to turn a drawing on its side to read the information.
- Notes should be grouped together and not spread over the drawing.

• Underlining is not recommended.

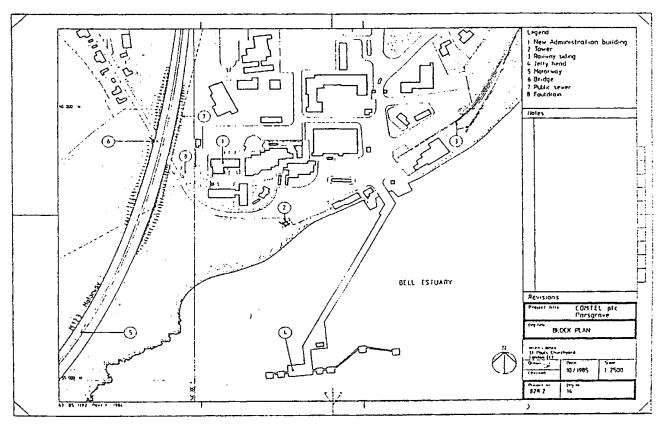

Borders and Title Blocks


One of the most important features of any drawing is the border and title block. The border (or margin) is a line which follows the outer edge of the drawing and is usually 10 or 20mm inside it. This margin is very important because everything inside it forms part of any contract.

The 'Title Block' is locked within the boarder and contains information such as:

- Project title i.e. New Community School.
- The subject i.e. Hot and Cold Water Services.
- The date of the original drawing.
- Dates of any revisions.
- Job Number.
- Drawing Number.
- Scale.
- The name of the person who drew up the drawing.
- Name of architects, consultant engineers or surveyors.

Title Blocks are usually located along the bottom or sides of drawings as shown below:


Scales

A scale can be used to increase the detail of a small object or to accurately represent a large object on a smaller piece of paper. The majority of scaled work done in the construction industry is to reduce objects to a smaller more suitable size that will fit on a sheet of paper.

The list below shows the scales used in BS 1192:

- Block Plans 1:2500 These show the outlines of buildings and may also indicate roads, railway lines or rivers.
- Site Plans: Between 1:500 and 1:2500 Although often drawn at the same scale as the block plan site plans only give details relevant to the actual project. These details could relate to landscaping arrangements or show underground drainage pipe-work.
- General Location Drawings 1:200 or 1:100 These drawings can show pipe runs within the building and the location of radiators and sanitary fixtures.
- When details of boiler houses or plant rooms are given the scale may increase to 1:50. This enables greater detail to be shown.
- Where particular detail is necessary the scale could be as high as 1:20 or 1:10. This could be in the case of a bracket or support for a piece of equipment.

Here is a drawing of Block Plan originally drawn at 1:2500 but printed not to scale (NTS).

Figure 5. Block Plan

Scale Rulers

As already stated, the scale of the drawing will be indicated in the block. To take measurements from such a drawing a 'Scale Rule' is used. Scale rules are usually manufactured from plastic and have several scales indicated on the ends as shown below.

1 20 0	200mm		600 600	1111 1 100	100°C	1200	1400	1600 16	1000 1800	7000 20	7300 72	24C0	2600	2800 29	3000mm 30m
BS 1 347 PART 3							JA	KAR				315	PL.	M4114	
wsi wwosi		51 361	21 021		01 001	06 	8 09 1111/111/		e 09	04 1111111	> 0 + 	0f	50 50	سر سسی ۱۱۱۱۱۱	

Longa transformedian as seen	

J

Graphical Symbols and Abbreviations

In order to read a drawing properly, and to understand what is happening, an agreed set of graphical symbols and abbreviations are used. All the different trades have a set of symbols pertaining to their respective works. The works of the plumber is often referred to as the "Mechanical Services".

The Mechanical Services includes:

- Hot and Cold Water Services.
- Central Heating Installations.
- Air Conditioning Pipe-work.
- Compressed Air Lines.
- Oil and Gas Supply Lines.
- Above and Below Grounds Drainage.
- Medical Gas Services.
- Sheet Metal Roof Coverings.

When pipes and their relative components are shown on a drawing it is vitally important that the craftsperson can correctly identify their locations and positions. The symbols for the location of pipes in a building are as follows:

Pipes at low level				
Pipes at high level				
Pipes in roof or above ceiling				
			_	
Pipes below floor or underground				
When pipes rise or drop to a differe	ent level t	hey are s	hown	
				•
To show the direction of flow				

In order to know if the pipe rises or drops the following abbreviations will be used:

Table 1.Abbreviations for Pipe Rises/Drops

ТА	To Above
FB	From Below
RTA	Rise To Above
DTB	Drop To Below

To identify individual services some of the following abbreviations may be used.

MWS	Mains Water Services
DW	Drinking Water
CWF	Cold Water Flow
CWS	Cold Water Service
HWSF	Hot Water Service Flow
HWSR	Hot Water Service Return
HWSVP	Hot Water Service Vent Pipe
FF	Fire Fighting Services
HRS	Hose Reel Service
СА	Compressed Air
F&R	Flow and Return

Table 2.Service Abbreviations

The symbols on the following pages are from the British Standards Institution and are used extensively in drawings relating to mechanical services.

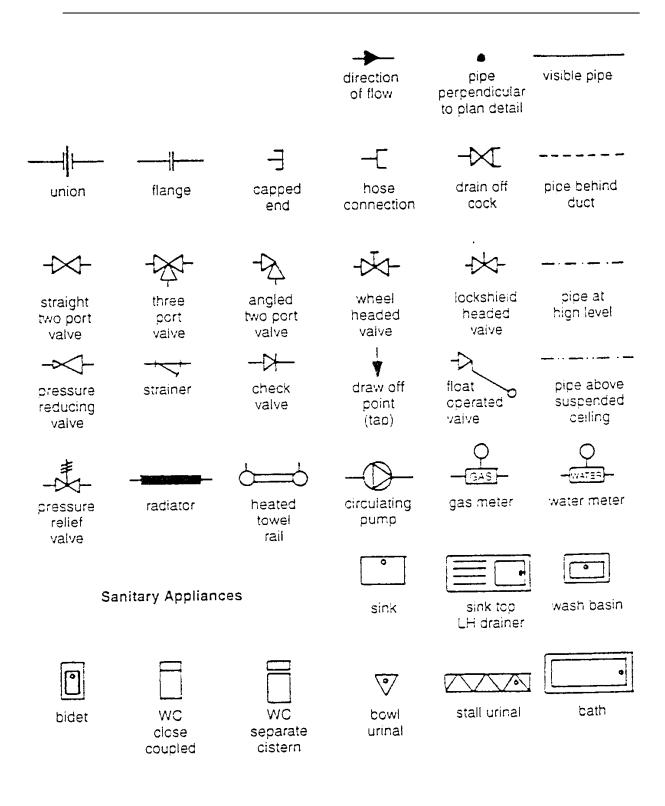


Figure 7. British Standards Institution Symbols

Trade of Plumbing – Ph	ase 2
------------------------	-------

Module	1	

Symbol Description Application			
•	Draw-off tap		
Â	Shower head		
Δ	Sprinkler head		
A_0	Float-operated valve		
Ħ	Float switch (Hydraulic type)		
B	Float switch (Magnetic type)		
	Filter or screen		
\bowtie	Supply stopvalve (SV)	X sv	
	Servicing valve (SV)	sv	
Water	Water meter		

Table 3.BSI Symbols

Symbol	Description	Application
X	Draining valve (BS 1192) (Drain valve) (drain cock)	
-⊏	Draining valve (Abbreviated version used in this book)	
-21	Line Strainer	
\bowtie	Pressure reducing valve (Small end denotes high pressure)	
\ominus	Expansion vessel	<u> </u>
X	Pressure relief valve (Expansion relief valve)	X
D	Check valve or non-return valve (NRV)	D
K [†] K	Double check valve assembly	
₽ B	Combined check and anti- vacuum valve (check valve and vacuum breaker)	
$\hat{\Delta}$	Air inlet valve	Î

Table 4. BSI Symbols

Symbol	Description	Application
CWSC	Cold water storage cistern (Storage and feed cistern) (Feed Cistern)	
F&ExC	Feed and expansion cistern	F& Ex C
HWC	Hot water storage cylinder or tank (plan)	H W C
	Hot water storage cylinder or hot store vessel (Direct types) (elevation)	HWC
HWC	Hot water storage cylinder or hot store vessel (indirect types) (elevation)	HWC
	Boiler (elevation)	
X	Temperature relief valve	Č.
Y	Tundish	

Table 5. BSI Symbols

Specifications

In addition to installing drawings most large construction projects will also have a 'SPECIFICATION' to which the craftsman will have to refer. The specification will give more information relating to the installation.

There are many advantages to having a specification for a project, for example:

- When tendering or pricing a job the specified standards must be followed. This ensures that no one can use sub-standard materials to keep a price low.
- The specification is also referred to at the installation stage. This means that the client is guaranteed that all materials are up to the required standard.

Specification will normally include the following information:

- The different materials that pipes and equipment are to be manufactured from.
- The spacing of brackets.
- The type of valves to be used.
- The standard and type of sanitary fixtures.
- The type of radiators.
- Type of boiler, cylinder and storage cistern.

Identification of Pipework

In large plumbing and heating installations it may be difficult to correctly identify what services pipes are supplying. A system of colour coding has been designed which enables pipe contents to be identified. The chart below shows the different colours that apply to the various services.

Pipe Contents	Basic Colour	Specific Colour	Basic Colour
Untreated Water	Green	Green	Green
Drinking Water	Green	Blue	Green
Hot Water Supply	Green	Whit-Crimson-White	Green
Heating Pipes	Green	White-Crimson-Blue	Green
Steam	Silver Grey	Silver Grey	Silver Grey
Condensate	Green	Crimson-Green-Crimson	Green
Natural Gas	Yellow	Yellow	Yellow
Diesel Fuel Oil	Brown	White	Brown
Compressed Air	Light Blue	Light Blue	Light Blue

Table 6. Identification of Pipework

Occasionally it will also be necessary to indicate the direction of flow on a pipe. This is shown by an arrow situated close to the colour code. In the case of central heating pipework the word *FLOW* or the letter F may be shown on one pipe and *RETURN* or R on the other.

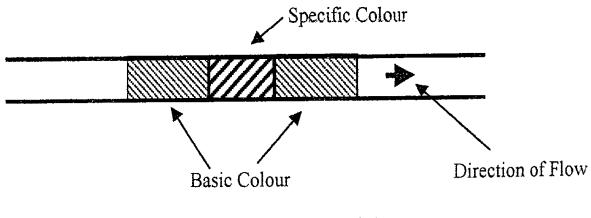


Figure 8.

Direction of Flow

Systems of Representation

Orthographic Projection

Orthographic projection shows the views of an object in three different positions, namely: PLAN – ELEVATION – END VIEW.

The plan is an outline of the object when viewed from above.

The elevation is what is seen when looking from the front.

The end view shows the view from one of the ends.

Orthographic projection is generally not used in the construction industry. It is more commonly found in the engineering sector where precise measurement is essential.

Try drawing the object below in orthographic projection i.e. draw a plan (z) an elevation (x) and an end view (y).

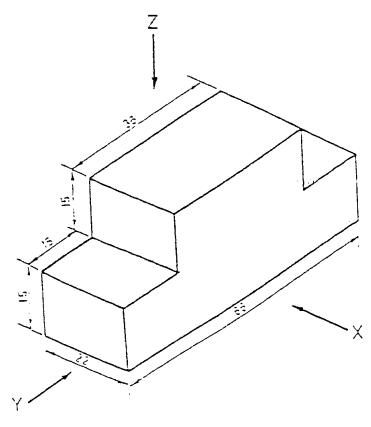
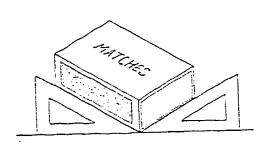



Figure 9. Orthographic Projection

Isometric Projection

In isometric projection all the horizontal lines are drawn at 30° to the horizontal plane while vertical lines are drawn vertical.

Isometric projection embraces the three views from orthographic projection in the one drawing. In the drawing of the matchbox below you can see the plan, elevation and end view.

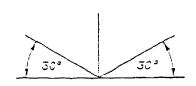
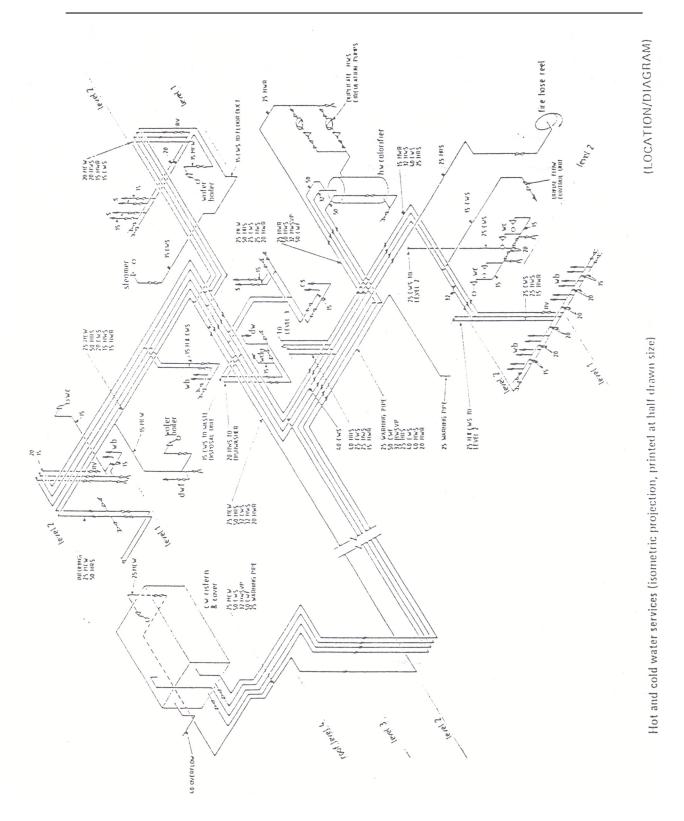



Figure 10. Isometric Projection

Isometric projection is often used in the plumbing industry to show pipe runs.

The drawing on the next page is an extract from BS 1192 Part 2 : 1987 with the pipework shown in the isometric projection.

Figure 11. Isometric Projection

Self Assessment

Symbol exercises

Complete the symbol and applications boxes in the table below.

Table 7.Symbol Exercises

Symbol	Description	Application
	Draw-off tap	
	Shower head	
	Sprinkler head	
	Float-operated valve	
	Float switch (Hydraulic type)	
	Float switch (Magnetic type)	
	Filter or screen	
	Supply stopvalve (SV)	
	Servicing valve (SV)	
	Water meter	

Symbol	Description	Application
	Draining valve (BS 1192)	
	(Drain valve) (drain cock)	
	Draining valve (Abbreviated version used in this book)	
	Line Strainer	
	Pressure reducing valve (Small end denotes high pressure)	
	Expansion vessel	
	Pressure relief valve (Expansion relief valve)	
	Check valve or non-return valve (NRV)	
	Double check valve assembly	
	Combined check and anti- vacuum valve (check valve and vacuum breaker)	
	Air inlet valve	

Symbol	Description	Application
	Cold water storage cistern (Storage and feed cistern) (Feed Cistern)	
	Feed and expansion cistern	
	Hot water storage cylinder or tank (plan)	
	Hot water storage cylinder or hot store vessel (Direct types) (elevation)	
	Hot water storage cylinder or hot store vessel (indirect types) (elevation)	
	Boiler (elevation)	
	Temperature relief valve	
	Tundish	

Index

Α

A2 drawing board	9
В	
block plan	14
borders	

n

D	
dimensions	12
1	
isometric projection	25
L	
letters	12
М	
metric scale rule	9

Ν

0

orthographic projection 2	24
---------------------------	----

Ρ

pipe	
colours	23
protractor	9

S

scale	14
scale rulers	15
Set Square springbow compass	

Т

T-Square	9
----------	---