<table>
<thead>
<tr>
<th>Trade of Sheet Metalwork</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 2:</td>
</tr>
<tr>
<td>Unit 11:</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Module 2 – Geometry and Pattern Development

Unit 11 – Common Central Sphere

Learning Outcome:

Key Learning Points:

Training Resources:

Exercise:

Key Learning Points Code:

Common Central Sphere

Self Assessment

Index

List of Figures

Figure 1 - Common Central Sphere

List of Tables
Document Release History

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/08/06</td>
<td>First draft</td>
<td></td>
</tr>
<tr>
<td>04/03/14</td>
<td>2.0</td>
<td>SOLAS transfer</td>
</tr>
</tbody>
</table>
Module 2 – Geometry and Pattern Development

Unit 11 – Common Central Sphere

Duration – 12 Hours

Learning Outcome:
By the end of this unit each apprentice will be able to:

- Identify the conditions where the common central sphere method is applied
- Locate the centre for the common sphere
- Determine the sphere diameter
- Locate joint lines
- Develop the patterns including all allowances

Key Learning Points:

<table>
<thead>
<tr>
<th>Rk</th>
<th>Application of common central sphere.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Centre location for sphere.</td>
</tr>
<tr>
<td>D</td>
<td>Development of patterns.</td>
</tr>
<tr>
<td>D</td>
<td>Intersection solutions.</td>
</tr>
<tr>
<td>D</td>
<td>Interpretation of central sphere geometry.</td>
</tr>
<tr>
<td>Rk</td>
<td>Determination of joint lines.</td>
</tr>
<tr>
<td>D</td>
<td>Cylinder/Cone intersections.</td>
</tr>
</tbody>
</table>

Training Resources:

- Drawing instruments, equipment and materials
- Textbook: The Geometry of Sheet Metalwork
- Instructor handouts, drawings

Exercise:
Sample exercise - Figure 1.

Key Learning Points Code:

M = Maths D = Drawing RK = Related Knowledge Sc = Science
P = Personal Skills Sk = Skill H = Hazards
Exercise/Procedure Instructions
Answer Sample Questions

1. Fig. 1 shows the elevation of a revolving cowl.
 (a) Use the Common Central Sphere to determine the joint line.
 (b) Develop half patterns for each part. Scale 1 : 5

2. Fig 2 shows two intersecting right cones.
 (a) Draw the given view and determine the diameter of the Common Central Sphere.
 (b) Draw the joint line.
 (c) Develop a half pattern for cone A. Scale 1 : 5

3. Fig. 3 shows a cone intersected by a pipe.
 (a) Draw the given view including the joint line.
 (b) Develop a half pattern for each part. Scale 1 : 5

Figure 1 - Common Central Sphere
Common Central Sphere

The CCS or Common Central Sphere is used to determine the joint line between two or more intersecting pipes or cones.

Figure 1 gives excellent examples of the application of the CCS.
Self Assessment
Index

C

Common Central Sphere, 7